منابع مشابه
Automorphisms of Steiner triple systems
Abstract: Steiner triple systems are among the simplest and most intensively studied combinatorial designs. Their origins go back to the 1840s, and there exists by now a sizeable literature on the topic. In 1980, Babai proved that almost all Steiner triple systems have no nontrivial automorphism. On the other hand, there exist Steiner triple systems with large automorphism groups. We will discu...
متن کاملClassification of Flag-Transitive Steiner Quadruple Systems
A Steiner quadruple system of order v is a 3 − (v, 4, 1) design, and will be denoted SQS(v). Using the classification of finite 2-transitive permutation groups all SQS(v) with a flag-transitive automorphism group are completely classified, thus solving the ”still open and longstanding problem of classifying all flag-transitive 3− (v, k,1) designs” (cf. [5, p. 273], [6]) for the smallest value o...
متن کاملIntegrable Systems on Flag Manifold and
We construct integrable models on ag manifold by using the symplectic structure explicitly given in the Bruhat coordinatization of ag manifold. They are non-commutative integrable and some of the conserved quantities are given by the Casimir invariants. We quantize the systems using the coherent state path integral technique and nd the exact expression for the propagator for some special cases....
متن کاملSome properties of marginal automorphisms of groups
AbstractLet W be a non-empty subset of a free group. The automorphism of a group G is said to be a marginal automorphism, if for all x in G,x^−1alpha(x) in W^*(G), where W^*(G) is the marginal subgroup of G.In this paper, we give necessary and sufficient condition for a purelynon-abelian p-group G, such that the set of all marginal automorphismsof G forms an elementary abelian p-group.
متن کاملOn automorphisms of type II Arveson systems (probabilistic approach)
We give a counterexample to the conjecture that the automorphisms of an arbitrary Arveson system act transitively on its normalized units.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2019
ISSN: 0022-0396
DOI: 10.1016/j.jde.2018.07.057